
Naval Research Laboratory
Washington, DC 20375-5320

NRL/FR/5510--95-9766

A Paradigm to Assess and
Evaluate Tools to Support the
Software Development Process

JAMES A. BALLAS

JANET L. STROUP

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

May 17,1995

Approved for public release; distribution unlimited.

mp�.

REPORT DOCUMENTATION PAGE Form Approved

Public reporting burden for this collection of information Is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-01 88), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 17, 1995 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PE - 61153N
A Paradigm to Assess and Evaluate Tools to Support the TA - RR0150801
Software Development Process

6. AUTHOR(S)

James A. Ballas and Janet L. Stroup

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5320 NRL/FR/5510--95-9766

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Officer in Charge AGENCY REPORT NUMBER

Naval Surface Warfare Center
Dahlgren Division Detachment, White Oak
Silver Spring, MD 20903-5000

11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The purpose of this research is to develop and evaluate software prototyping tools that are used to produce "an executable
unit that demonstrates particular aspects of the behavior or functionality of the desired software product." It was conducted with

a particular perspective of assuming how the tools support an aspect of software design that has received little attention:

exploration of design space. To pursue this perspective, an initial definition of design space exploration was developed and

hypotheses were proposed on what outcomes would be observed if a tool supported design space exploration. Finally,
techniques were designed to obtain data to test the hypotheses in a general manner. Data were collected with these techniques

during a session in which a particular tool was used to design software. The results provided some support for the hypotheses

and suggested options for further refinement of the methodology. The transcribed observational data supported post-hoc analysis

that revealed aspects of the software development that occurred in the two-day session.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software development process Software design 42
Software prototyping tools Design space exploration 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

i

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

298-102

CONTENTS

INTRODUCTION.1 r

EXPLORATION OF THE SOFTWARE DESIGN SPACE .2

Definitions.2
Specific Hypotheses .2

USABILITY EVALUATION .3

COMPARISON TO IEEE STD 1209-1992 .5

RESULTS .6

Prior Hypotheses .6
Supplementary Analyses .8
Methodology Evaluation .12

ACKNOWLEDGMENTS .13

REFERENCES.13

APPENDIX A-Transcriptions of Real-time Observations and Inquiries .15

APPENDIX B-Last Solution File .33

APPENDIX C-Questionnaire .39

iii

A PARADIGM TO ASSESS AND EVALUATE TOOLS TO SUPPORT THE
SOFTWARE DEVELOPMENT PROCESS

INTRODUCTION

This study was part of a larger project called the "ProtoTech HiPer-D (High Performance Distributed
Computing Programl) Joint Prototyping Demonstration Project." The Prototyping Technology
(ProtoTech) program is a research effort supported by the Advanced Research Projects Agency (ARPA)
to develop advanced prototyping languages. The HiPer-D Demonstration was a joint effort of the
ProtoTech community and the Office of Naval Research to explore the applicability of prototyping
technologies to realistic military problems. An important first step in the HiPer-D project was to identify
an appropriate problem for study, one of suitable complexity to demonstrate the technology realistically,
yet small enough to be addressed by a limited number of people in a limited period of time. The
geometric region (GEO) server problem met these criteria; it was also of particular interest to the Navy
for its relevancy to the planned AEGIS weapons system upgrade. The capability to assign trackable
objects to their correct geometric regions in space is an essential function in the AEGIS system and
currently spread across multiple algorithms. Consolidation into a single GEO server has the potential for
significant system improvement. The HiPer-D Demonstration comprised several independent teams of
prototyping experts, each addressing the GEO server problem in a different prototyping environment. In
addition, several related efforts were undertaken to examine specific aspects of the problem.

Our work was conducted to assess a paradigm for evaluating how well a prototyping tool supports
software development. Prototyping tools are used to produce "an executable unit that demonstrates
particular aspects of the behavior or functionality of the desired software product" (Lee et al. 1994). This
assessment included data collected at a two-day interactive software development exercise at the Naval
Surface Warfare Center, Dahlgren Division (NSWCDD) involving a prototyping tool expert from Kestrel
Institute and two domain specialists from NSWCDD using the Kestrel Interactive Development System
(KIDS). KIDS was selected as the software tool for this exercise for several reasons. It is a product that is
relatively mature and has been used in a variety of domains. It also is designed to support a particular
software development process. This enabled us to make predictions about the types of behavior we would
expect and thereby assess not only the tool but perform a meta assessment on the evaluation methodology.
Finally, the tool supports a software development process that is abstract and closely coupled to the theory
of the domain. Paradigms to evaluate software development at an abstract level are not available. The
focus at this level is the representation of the domain in software, and actions taken to develop and change
this domain. This focus is consistent with the general hypothesis that was explored. This exercise
provided us an opportunity to further our research in the exploration of design space.

1. This is a project to develop a new architecture for the next generation of the AEGIS Weapons System. It is to be jointly
developed by three organizations: Johns Hopkins University/Applied Physics Laboratory (JHU/APL), General Electric (GE), and
the Naval Surface Warfare Center at Dahlgren, Virginia (NSWCDD) supported by the Computer Sciences Corporation (CSC).
The work was divided into three thrusts: 1) to evaluate a wide range of architectures and combat system issues and choose a
recommended architecture; 2) to evaluate promising technologies provided by the Advanced Research Projects Agency (ARPA);
and 3) to evaluate and extend emerging HiPer-D technologies, methods, and tools. The technologies provided by ARPA under
Thrust 2 include the ISIS distributed computing workbench from Cornell University, INTEL's Paragon supercomputer, and the
MACH microkernel developed by Carnegie Mellon University.

Manuscript approved Oct. 20, 1994.

1

Ballas and Stroup

EXPLORATION OF THE SOFTWARE DESIGN SPACE

The general hypothesis being tested is whether a tool supports exploration of the design space. The
evaluation of this hypothesis implies an understanding of what design space exploration means. If one
considers design space exploration as one part of the software engineering process, then initial definitions
of this concept can be derived from a framework of design methodologies developed by Song and
Osterweil (1992). Their framework is a method-component hierarchy and includes four abstract types:
Concept, Artifact, Representation, and Action. Using their notions of these types, the following
preliminary definitions were developed.

Definitions

Design space exploration consists of actions that produce different representations.

Representations are descriptions or specifications of design artifacts.

Actions are physical and/or mental processing steps used to produce or modify an artifact.

These preliminary definitions need to be tailored somewhat for the particular tool that is evaluated.
Accordingly, examples of representations and actions that are possible within the KIDS tool were
generated to guide the development of the data collection methodology. The representations created in
KIDS are the domain theory, specifications, and programs described in the Refine language (upon which
KIDS is built), and the Lisp code. Examples of actions within the KIDS tool that produce different
representations are:

Develop theory: produce the initial representation
Return to initial/previous/next state: reset representation to another state
Focus (i.e., select subset of specification): select a subset of the representation for subsequent actions
Apply transformation
Select inference mode
Fold, unfold a specification
Simplify an expression
Select algorithm tactics
Select compiler

A record of the actions taken while solving the GEO server problem was made by observation and
audio recording of the participants' statements, and by periodic storage of the solution file. These data
were examined to assess whether the tool supports design space exploration. In order to develop some
detail about the expected effects of the tool on exploration, specific hypotheses were generated before the
data collection session. These specific hypotheses provided further guidance about the type of data that
should be collected.

Specific Hypotheses

The following section presents specific hypotheses (Hol through Ho5), followed by data that were
collected and analyzed to test the hypotheses. At this point in the development of an evaluation paradigm,
the hypotheses can not be tested statistically.

Ho]: Alternative representations can be generated and actions taken on them.

Distinct, different alternatives will be represented and actions taken on them. The data to evaluate
this hypothesis will consist of identifying alternative representations that are generated during the
challenge problem design session. The issue here is how to distinguish between alternatives. In many

2

A Paradigm to Assess and Evaluate Tools

cases, this distinction could come from the alternative menu options that are offered to the user, such as
selecting a particular algorithm tactic or selecting a particular compiler. This choice will produce a
different specification. Another difference in the representation might be the feedback to the user that
occurs when the inference mechanism is operating. The user has several options that will provide
different types of feedback and different opportunities for intervention.

Ho2: Design exploration will involve evaluation and comparison of alternatives.

Evaluation actions will be taken on alternatives followed by modification or generation of an
alternative. This hypothesis further specifies what exploration of alternatives means by focusing on
particular actions-those which produce an evaluation of the artifact. Data for this hypothesis could come
from the final stage of development, when the specification is compiled and executed. At that point, we
may observe the KIDS users examining software metrics such as size and speed. However, during the
development process, there may be verbal comments alluding to comparisons of alternative designs. One
of the windowing configuration options available in KIDS places two program viewing windows side by

side. Use of this configuration would be evidence for this specific hypothesis.

Ho3: Alternative representations may support evaluation and comparison of design alternatives.

This hypothesis refers to the possibility that the type of representation may or may not support
comparison of alternatives. For example, an option in KIDS is to fold/unfold the specification, producing

less and greater detail respectively, and allowing the user to compare alternatives at different levels of
detail. Evidence for this hypothesis will be actions taken to change the representation form, which do not

really add or subtract from the complete specification.

Ho4: Design space exploration will consist of a fan-out generation and subsequent culling of artifacts.

A history trace of alternatives generated will show an increase in the number of alternatives, followed

by a narrowing of the alternatives toward a particular solution. This hypothesis is suggested since it is an
intuitive model of the creative process.

HoS: Design exploration will involve an examination of prior actions and representations.

Evidence of the user's examination and analysis of prior actions and alternatives will occur in two
ways using the KIDS tool. The first will be through conversations in which the users will reflect upon and
comment upon prior actions. The second will be through viewing the Output History Pane and taking
actions on prior derivations listed within this window.

Hypothesis 5 is a simple statement of a process that is complex and little understood. It refers to a
meta level of software development in which a person is evaluating what has been done. This examination
can be observed in some ways. But the examination is being done to support an understanding of what has

been done and the planning for further actions and development of representations.

Elaboration of this hypothesis can take on different forms depending on whether design space
exploration is conceived of as problem solving, creative construction, invention, etc. This point returns us
to the particular perspective of this research: to develop and evaluate a paradigm to monitor design space

exploration. Once we have the capability to follow a process of exploring the design space, we will be
able to be more specific about what it actually is.

USABILITY EVALUATION

In addition to developing a technique to evaluate how the tool would support design space
exploration, there was interest in evaluating the usability of the tool. The evaluation of this aspect of

3

Ballas and Stroup

software development used traditional usability procedures. These procedures were partially tailored for
the KIDS tool. For example, one of the evaluation criteria is user performance on a benchmark task. With
KIDS, the primary user tasks are those in the software process model on which KIDS is based. These
tasks, and the subtasks within each of them, are as follows:

Specify domain theory:
Specify functional constraints on input/output behavior
Generate abstract expression
Create rules
Derive laws

Convert specification to code:
Design algorithm
Simplify
Partially evaluate
Refine data types

The performance of these tasks was assessed by real-time observation and inquiry, and by a post-
session questionnaire. Real-time observation was performed using the annotation sheet shown in Fig. 1.
Four columns were used to record the time of the observation, the current user task, the program function
or window in which the user's actions were located, and the details of the observation. Observations were
detailed so that the following types of information would be obtained for later analysis:

* Task completion time and errors

* Number of options/alternatives explored

* Critical incidents (both positive and negative)
Inability to find/open/close/save "work"
Recognition of success
Recognition of other programming options
Evaluation of algorithm performance vis-a-vis different implementations
Recognition of and recovery from error
Error-free performance on first attempt

Fig. I - Annotation sheet for real-time observations

In addition to observations, occasional inquiries were made to clarify comments and activities. In
particular, clarification was sought on issues related to the form of the representation that was being
developed (e.g., why did you decide to choose this form of representing the domain?). In order to have a
record to clarify the observations and inquiries, a continuous audio recording was made of the sessions.

Finally, a post-session questionnaire was developed that included open-ended questions about the
strengths and weaknesses of the tool and solicited recommendations for improvement. A series of these

Time I Task I Location f Annotation

4

A Paradigm to Assess and Evaluate Tools

questions was formatted for the particular design model in KIDS. These questions asked how the tool
supported the specific phases in the design process and what improvements would be recommended to

support these phases. This tailoring is consistent with the IEEE standard to evaluate Computer-Aided
Software Engineering (CASE) tools as described below. The questionnaire also included a table of design

heuristics that have been used in an approach called heuristic evaluation to find usability problems in
interfaces (Nielsen 1992). Heuristic evaluation uses a small set of individuals to evaluate an interface
according to design principles.

COMPARISON TO IEEE STD 1209-1992

IEEE STD 1209-1992 (IEEE 1992) outlines a recommended practice to evaluate and select CASE
tools. Although the tools of interest here might not be considered CASE tools in some respects, it is useful
to compare our approach with this standard of recommended practice. The standard outlines several
evaluation process models. The one most comparable to our approach is the "evaluation for future
reference" model. In this model, the tool is being evaluated on all relevant criteria and the results are
made available for future reference. In the other models, a tool selection phase is involved that introduces
issues that are not present when a single tool is being evaluated (e.g., weighting of selection criteria). Two
steps are part of this model: the development of tailored criteria and the evaluation itself. Criteria tailoring
is the selection and definition of a set of criteria whereby the characteristics of the tool are quantified and
measured. The types of criteria listed in the standard include reliability, usability, efficiency,
functionality, maintainability, profitability, and a general category. Many of these criteria are similar to
those used in the ProtoTech challenge problem paradigm. Two of them, usability and functionality, were
the key criteria presented in the initial briefing of this proposed paradigm to the ProtoTech community.
Details on how to quantify these two criteria were developed prior to the data collection session. These
details reflected some tailoring for the particular tool. Specifically, examples of the types of actions that
could be taken in the KIDS tool were listed as performance indicators to test the hypotheses. Thus, the

tailoring recommended in the IEEE standard was partly completed. As described earlier, usability was
assessed through observation and inquiry and through completion of a post-session questionnaire.

In the present effort, there is particular interest in investigating how to evaluate exploration of the
software design space. Although the IEEE standard does not explicitly address this aspect of
functionality, it does include some specifics that would seem to be related to design space exploration. It
decomposes specific functionality criteria into three classes: those related to the operating environment,
those related to particular life-cycle phases, and those common across all life-cycle phases. The life-cycle

phases are decomposed into modeling, implementation, and testing, and it is the criteria listed under
modeling that may be related to design exploration. Modeling criteria are intended to assess a tool's
capability to support the identification of software requirements, to transform requirements into design,
and "to express software design" (italics added for emphasis). Specific modeling criteria include:
diagramming, graphic analysis, requirement specification entry and editing, requirement specification
language, design specification entry and editing, design specification language, data modeling, process
modeling, simulation, prototyping, screen generation, traceability, specification consistency and
completeness checking, other analyses, and report writing. Thus the standard supports the waterfall
software development model and places emphasis on the capability to transform requirements into design
specifications. However, it is useful to note the importance the standard places on the capability of a tool
to support the expression of the software design. Clearly, design spa6e exploration requires and will be
enhanced with adequate design expression tools. The standard also incorporates these specific criteria
mechanisms to evaluate the design such as simulation, data and process modeling, and traceability. It
might be a useful exercise to tie some of these specific criteria into a prototypical process model for
design space exploration showing the feedback loops and iteration that would be expected and
theoretically should be supported to enhance the exploration of the design space.

5

Ballas and Stroup

RESULTS

Prior Hypotheses

The data for these results come from four sources: the real-time notes (a transcribed and edited
version of these notes is attached as Appendix A), the audio tapes (used to edit and refine the real-time
observations), the solution files that were saved periodically (the last solution file is included in Appendix
B), and the post-session questionnaire that was completed by two persons from NSWCDD (Appendix C).
Because an objective of this research is to refine a methodology to assess the functionality and usability of
prototyping tools, the results present two perspectives: a description of the type of assessment available in
the employed form of the techniques, and an assessment of the techniques themselves. The first
perspective on the results is presented within the context of the detailed hypotheses that were made.

Hol: Alternative representations can be generated and actions taken on them.

An example of alternative representations is the initial and alternative versions of the function
HIPER-D which places contacts (objects) into the particular zones (see Fig. 2). The initial version simply
specifies the mapping function. The alternative version divides this mapping function into three cases: the
empty set of zones, the singleton set of zones, and the remaining cases. The alternative version was
produced by applying the divide and conquer tactic to the initial function, followed by the application of
simplification tactics. The divide and conquer tactic generated an alternative software design, upon which
further actions were taken. Therefore at least one data point supports this hypothesis.

Initial version
function HIPER-D

(fo: FLATLAND I ...)
returns (contact-map: map(CONTACT, set(ZONE))

I contact-map = {I c -> { z I (z:ZONE) z in all-zones(fo) & in-zone(c,z)}
I(c:CONTACT) c in contacts(fo) I})

Alternative version
function HIPER-D-2 (CNTKS-7: set(CONTACT), ZNS-9: set(ZONE))
returns

(Z-192: map(CONTACT, set(ZONE))
I Z-192

= {I C -> {Z I (Z: ZONE)
Z in ZNS-9 & IN-ZONE(C, Z)I

I (C: CONTACT) C in CNTKS-7 I})
=if CNTKS-7 = {} then {I I}

elseif CNTKS-7 less! arb(CNTKS-7) = { }
then {I C -> {Z I (Z: ZONE)

Z in ZNS-9 & IN-ZONE(C, Z)}
I (C: CONTACT) C in CNTKS-7 I}

else let (Y-OP-3
tuple
(set(CONTACT), set(ZONE), set(CONTACT), set(ZONE))

= HIPER-D-2-DECOMPOSE-USING-UNION-DESTRUCTOR
(CNTKS-7, ZNS-9))

HIPER-D-2(Y-OP-3. 1, Y-OP-3.2)
+* HIPER-D-2(Y-OP-3.3, Y-OP-3.4)

Fig. 2- Initial and final versions of function HIPER-D

6

A Paradigm to Assess and Evaluate Tools 7

Ho2: Design exploration will involve evaluation and comparison of alternatives.

Three types of data were suggested for evaluating this hypothesis. The first was that the alternatives
would be coded and executed and comparisons made using standard software metrics. This outcome was
not observed during the session since a fully executable solution was not completed in the time set aside.
However, given further time it is expected that this type of data would be observed.

The second type of data was verbal comments made during the development process. There were
several examples of this. Early discussion focused on defining the objects in the domain, especially the
types of contacts and the types of zones. The initial list of zones came from the problem description and
included four types: WEAPON, ENGAGEABILITY, SLAVE-DOCTRINE, and TIGHT. These were
abstracted to two types, WEDGED-ANNULUS and POLYGON, which were each to be defined in a
manner that would cover virtually all cases. The properties of the WEDGED-ANNULUS were defined so
that WEAPON, ENGAGEABILITY, and SLAVE-DOCTRINE zones could be handled by this object.
The properties of POLYGON were defined as the position of a sequential list of vertices that would
support the inclusion of both convex and concave polygons and any number of vertices. The decision to
opt for generality was made in the specification phase of design and was made with some verbal
consideration of the implications. Later, when it came to specifying whether a contact location was within
a polygon in the function IN-POLYGON, a particular algorithm had to be implemented and the coding
implications of this completely generalized alternative became apparent. Much of the afternoon of the
second day was spent generating code for an IN-POLYGON function. This coding would not have been
necessary if a library function were readily available. In fact, there is a C function that checks whether a
point is within a polygon. The ability to incorporate this function as a call would have enhanced the
development of the generalized solution sought in this session and perhaps supported the further
evaluation and comparison of generalized designs to designs that were more specialized. In this instance,
design space exploration would have been enhanced if this particular function could have been found
through a library search and once found, quickly incorporated into the solution.

The third type of data for evaluating this hypothesis was a side-by-side windowing configuration.
There were at least two instances of this. The first was about 17:57 on the first day (see Appendix A). The
tutor opened two editing buffers to enter constraints on recently entered types. These two buffers were
used to maintain consistency between an initial specification and an elaboration of this specification. The
second instance was 16:16 on the second day when two buffers were again used. In this instance, the
buffers were used to implement and test the code. In this instance, additional functions were created that
had to be consistent with representations created earlier. In both cases, the representations being
compared are not alternatives in the strict sense but are different representations of the domain, which
have to include some elements that are consistent. These instances were captured by an observer query
and observation.

Ho3: Alternative representations may support evaluation and comparison of design alternatives.

The possibility in this hypothesis is that evaluation and comparison of alternative designs may be
better supported by some forms of representation. The a priori example was the folding or unfolding of a
specification. This was not observed in the session. However, following up on the discussion of the
previous hypothesis, the implications of the generalized representation of polygon became more evident
as the particular algorithm to implement IN-POLYGON was written. In other words, the difficulty of
implementing the generalization representation may not have been as apparent when the zone class
representation was decided.

Ballas and Stroup

Ho4: Design space exploration will consist of a fan-out generation and subsequent culling of artifacts.

There was one instance that supported this hypothesis. When the function HIPER-D was expanded
with the Divide and Conquer tactic, redundant code was generated for the empty set case. The subsequent
simplification for this case reduced the artifact. It was expected that this hypothesis would also be
revealed in the generation of different design representations, not just detailed specifications. It was also
expected that artifacts at a higher level would be generated, then pruned as the alternatives were evaluated
and compared. Instances of this were not observed in the artifacts, although examples of this process are
suggested by the audio record. In particular, during the process to define whether a point was within a
polygon, several alternative algorithms were generated and discussed. One was finally settled upon.

Ho5: Design exploration will involve an examination of prior actions and representations.

There were several instances that are consistent with this hypothesis. Two that may be particularly
relevant were instances when a higher level object description was modified after and during the process
of specifying details at a lower level. For example, in the process of defining the function IN-WEDGED-
ANNULUS, the insight occurred that the whole zone did not have to be passed, just the zone shape. This
required a rewriting of the function IN-ZONE, which had already been generated.

Supplementary Analyses

Observational Data

The combination of real-time observation with audio recording produced a substantial data record
that might provide the basis for extensive analyses. Some examples of possible analyses follow.

Observations were coded and categorized as follows and can be used for further analyses:

K: Key incidents
0: Observations
Q: Observer queries
R: Responses to queries
T: Tutor comments or queries
U: User comments or queries

A distribution of these codes by type is shown in Table 1. Fifty-eight of the 246 codes were incidents of
key interest. Most of the key incidents (29) were errors (see Table 2). Very few were representation
decisions, a key behavior for the assessment of the a priori hypotheses. The low number means that either
very few decisions were being made, or that the decisions were not captured with this observation
procedure. It is apparent that further refinement of a method to trace the development and modification of
the domain representation would be useful.

A second analysis of the observation data focused on task timelines and task context. The intent was
to determine the contextual shifts that occur in the software development process. Studies of user
interaction with intelligent systems have pointed to the disruptive effects of contextual shifts (Malin et al.
1991). An example is when an operator of a fault diagnosis system must mentally shift from thinking
about the domain to thinking about how to use a computer interface to control the system or obtain
information about system status. This disruptive effect of the interface is called "wading through the
interface." Similar interference may occur in software development with advanced prototyping tools. The
development process might be interrupted by a computer interface and development environment that
imposes contextual switching As a simple example, if in the process of coding an algorithm, users have
to search for the name of a library, they may forget some of the subsequent logic that had been mentally

8

A Paradigm to Assess and Evaluate Tools 9

sketched, especially if the operations imposed by the interface require mental work and activity that is
irrelevant to specifics of the domain.

Table 1 - Frequencies of Different Types of Observations

Type of Observation Code Frequency
Key Incident 58
Observation 92
Observer Query 10
Response to Query 20
Tutor Comment/query 38
User Comment/query 28

Table 2- Classification of Key Incidents Observed

Type of Key Incident Frequency
Error 29
Rewrite/Revision 5
Representation Decision 9
Misc. 15

To assess contextual switching, the task and task times were imported into commercial project
management software to generate graphical timelines. Additionally, the task context was coded into one
of the following categories:

A) Demonstrate tool
B) Understand problem
C) Define theoretical objects
D) Define attributes of objects
E) Define functions
F) Refine and compile specification
G) Perform save/load/find operations

Figure 3 shows the timeline. The tasks are sorted first by task context and second by starting time.
Note that activity on the first day follows a waterfall pattern. There is some contextual switching between
categories C and D. It's unlikely that this switching would be confusing except perhaps on the switches
from D back to C. Note that this pattern was iterated. Activity on the second day shifts between contexts
to a greater degree, and the switching is less systematic. This shifting is due to several factors. On the
second day, the solution was becoming complete, which meant that the files were being saved more
frequently and later phases of the development process (i.e., compile) were possible. Secondly, in
addressing a difficult aspect of the challenge, the users were searching and exploring options and moving
out of a systematic development pattern. It would be particularly interesting to discover the development
processes that occur when people address the more difficult aspects of the problem. Finally, as the
solution evolved, refinement and compilation were possible, which in turn led to examination and
revision of earlier products.

10 Ballas and Stroup

i...........................

.......

s * ~~~~~~~~~~~~~~~~~~~~~~~II
E I

..................._.
g~~~~~~~~~~~~~~~~~~~

u

We En~~~~~~~~~~~~~~~~~~~~~~~~~~~
, I | l I I | 11 1 A__ E~~U

0a
i
z0
V~

A Paradigm to Assess and Evaluate Tools

._ _ _

.........._.....

......-.....-........ --..-..........-..-.......-.-... _....... _.

I

...... ~~~~~~~~~~~~.. _._

.1''.I I.... --''......

......... _

.......... .. _ _......

.~~.....

....
......... . __ _- , I-....-.-.............-_........-........................

A............._.. _. _

z~~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L 0j a_ ;Uii000OnD D X k ,,,£ .XL .L=OO~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C a

11

In

-I

r\-

r-r
t._

x

00
..

.t
2

..
I a

Ballas and Stroup

Questionnaire

Appendix C presents the questionnaire. Because only two users were involved in this study, the data
collected from the questionnaire are sparse. Furthermore, the users had only a viewgraph presentation and
brief demonstration of the tool during the morning of the first day-much less than the standard 5-day
training normally given to understand the tool. However, even with only a sample of two novice users, the
results of the questionnaire do provide information about suggested changes to the interface that may be
useful for the developer.

Methodology Evaluation

The data collected can provide instances that support the hypotheses, but are inappropriate to use for
statistical tests of any of the hypotheses. For further development of the evaluation methodology,
alternative hypotheses will have to be generated a priori and the data collection technique refined.
Specifically, prior clarification or definition of instances that support competing alternatives will have to
be made to avoid confirmatory biasing effects.

Observation Data Capture and Analyses

As illustrated in the supplemental analyses, the transcribed observational data can support some
interesting "discovery" analyses. These analyses will require an accurate and consistent method of
recording the data. While much of the data can be obtained from an audio record, and more from a video
record (which was not done in this instance), a real-time recording methodology is important in order to
capture the key incidents. The real-time record can also focus any subsequent transcription of the tapes.

Additional analyses could be performed with an improved data capture procedure. For example,
analysis of errors could derive the causes of the error. But this would required detailed data on the error
action and its context, information that could come from a video record and behavioral actions.

Two caveats should be noted about the observational data collected. First, the amount of data
collected was due in part to the particular composition of the design team: a tool expert and two domain
users. The tool expert was only generally familiar with the domain; the users had little knowledge of the
tool. This composition facilitated the generation of a verbal record, probably more so than if a single
person was involved and asked to think aloud or record their process. A major limitation of this
composition is that the tool expert had two roles to assume: a tutor for the tool and a software designer.
This duality would be mixed in the data record, especially the verbal record and perhaps in the artifact
record. Such a mixture would confound two phases in the evaluation of a tool: its learnability and its
effectiveness in developing a design solution.

Questionnaire

The questionnaire did not include a rating scale, but Userl added one, after consulting with the
experimenter. Usually this would be highly inappropriate, but in this case, the users were instructed to
recommend changes to the questionnaire instrument itself. Userl employed the response scale in
answering each of the questions that solicited an evaluation of a particular function of the tool. Userl also
provided verbal labels for the units of the response scale and in this sense, the numeric scale was simply a
shorthand notation for the verbal judgments. Rather than presenting an extended discussion about the
validity and merit of a numeric response scale, a few comments will be made. First, although the user felt
comfortable with using a response scale, the meaning of the scale units (e.g., excellent, good, above
average,...) is uncertain in the absence of a standard or a set of definitions. Furthermore, in the absence of
a response scale, the respondent may be inclined to provide greater detail. For example, in response to
question 9 ("How well does the tool support exploration of the design space?"), User2's response that the

12

A Paradigm to Assess and Evaluate Tools

tool provides "an opportunity but doesn't force it or explicitly encourage it" gives some information about
how this user views the design capability in the tool.

It is apparent in both users' responses that definitions of some concepts must be added. This
refinement of a questionnaire comes about through the normal process of pilot testing. One feature of the
questionnaire that seemed to solicit information in a useful manner was to direct a set of three questions
toward each of the particular functions of the KIDS tool. The first question in the set asks about the
general value of the tool for the function (e.g., Q5 "How well does the tool support algorithm design?")
and the second and third questions solicit details about the best features for this function and
recommended changes or additions. Sometimes the answers will be contradictory. For example, in
response to question 5, Userl indicated that one of the best features was the algorithm design library
while User2 recommended some library-like features.

Finally, it is also apparent that clarification of many of the users' responses would be helpful. This
suggests that a structured interview would be more appropriate than a self-administered questionnaire.
Because the user community for these advanced prototyping tools will be relatively small, a structured
interview is feasible from a sampling perspective. And since many of the questions will address aspects
specific to a particular tool, prior refinement of a questionnaire will be impractical. Thus it is
recommended that structured post-session interviews be used rather than self-administered questionnaires.

ACKNOWLEDGMENTS

We benefited greatly from the advice and consultation of Debbie Hix and Lisa Achille on design and
methodology, and Ralph Wachter on objectives and strategy. Harry Crisp contributed management and
logistic support. Doug Smith consented to using KIDS as the test case and served as the expert tool user.
Chang Nguyen and Mark Wilson served as the domain experts. We received valuable review comments
from Lisa Achille, Helen Gigley, Debbie Hix, Rob Jacob, and Doug Smith. This work was sponsored by
the Office of Naval Research through the Naval Surface Warfare Center, Dahlgren, VA.

REFERENCES

IEEE Std 1209-1992 (1992). IEEE Recommended practice for the evaluation and selection of CASE
tools. IEEE: Piscataway, NJ.

Lee, J.A.N., B. Blum, P. Kanellakis, H. Crisp, and J. A. Caruso (1994). ProtoTech HiPer-D Joint
Prototyping Demonstration Project. Final Report Version 1.0, Naval Surface Warfare Center
Dahlgren Division: Dahlgren, VA.

Malin, J. T., D. L. Schreckenghost, D. D. Woods, S. S. Potter, L. Johannesen, M. Holloway, and K. D.
Forbus (1991). Making Intelligent Systems Team Players: Case Studies and Design Issues. NASA
Technical Memorandum 104738, Lyndon B. Johnson Space Center, NASA: Houston, TX.

Nielsen, J. (1992). Finding usability problems through heuristic evaluation. In proceedings of CHI, 1992
(Monterey, California, May 3-May 7, 1992). ACM, New York, 1992, pp. 373-380.

Smith, D. R. (1990). KIDS: A Semi-Automated Program Development System, IEEE Trans. Software
Engin. 16(9), Special Issue on Formal Methods, Sept. 1990, pp. 1024-1043.

Song, X. and L. J. Osterweil (1992). Toward objective, systematic design-method comparisons. IEEE
Software, May, pp. 43-53.

r--
pi

4. .

rr:;C'::

13

Appendix A

TRANSCRIPTIONS OF REAL-TIME OBSERVATIONS AND INQUIRIES

Uh

K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
09:35 85 Introduce tool Not on computer 0: Instructional style will be interactive.

0: First overhead: Design model.
0: Questions on clarifying design model and raising issues about formal

method approach.
0: Clarify finite differencing.
0: Lots of questions.
U: How does model handle ambiguity?
T: Time needed to develop a solution. (Arrow to second overhead.)
U: What type of code is produced? (Arrow pointing to "Time needed to

develop a solution" item above.)

0: Second overhead: Example problem, Costas Array Problem; 2 weeks to
solve but this involved a false start.

0: Few questions.

0: Third overhead: Transportation scheduler; elaborated on KIDS concept as
a knowledge-based system.

0: No questions.

0: Fourth overhead: Track assignment in an Air Traffic Control System;
described 2 design solutions.

0: No questions.

A,. J I T I' k!
. i I -V I

K: key incident 0: observation Q: observer query
Time Dur Task ApplJOperation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
Introduce tool
(continued)

Not on computer

0: Fifth overhead: Example of a theory of sets used to illustrate how the
theory is described.

0: No questions.

0: Sixth overhead: Example of a theory of sorting (this was the first showing
[of] a specification); clarify meaning of a specification as a formal
interface, distinction between domain theory and specification, notion
of formality, user knowledge needed in using formal methods (i.e.,
requiring theorem-proving expertise).

0: Lots of questions.
T: Background of user of KIDS should be different; maybe training has to be

greater, but code generation isn't required, design can be biased toward
specific targets, clarify design model.

U: Order of the options in refining the specification.
T: They're a set of tools.
U: How much of a learning curve for the design model used?
R(T): More of a curve for US compared to European-and presumes some

comprehension of mathematics.

0: Seventh overhead: Theory Development.
T: Principle of how to develop theory.
T: Where do rules come from? From laws.
T: What laws and concepts are needed? Concepts that remain invariant and

operations that preserve concepts.

0: Eighth overhead: Algorithm design-refinement hierarchy; algorithm
ideas can be modeled as theories.

0: Ninth overhead: Variation of algorithm hierarchy from operation research.
Q: What is your general reaction to this introduction of language?
R(U): Totally different system; does [it] require a fundamental skill before

using it?
Q: What languages do users prefer?

10:26

I

K: key incident 0: observation Q: observer query
Time Dur Task Appl/Operation R: response to query U: user comment/query

.____ T: tutor/tool-expert comment/query
Introduce tool R(U1): Lisp and Fortran, oriented toward vector machine; now is excited about
(continued) this tool.

R(U2): This could be used to get correct algorithms, favorite language is C++
with EE background.

Q: How did this intro compare to typical introduction to a new language?
U: Was a language introduced?
0: Discussion of what the language is with this system.
U: How would the tool work for maintenance?
T: There could be a problem if a person was only oriented to C or for

someone without a functional language background. Preferred
background would be someone familiar with first order predicate
calculus, sets, functional language.

Q: What about an introduction to the interface commands?
11:00 5 Demo of system Load U: Representation form-Lisp?

(Queens problem) R(T): No.

11:02 Load U: Effect of loading extraneous theories.

11:03 Load U: Is there a "man" facility ?
R(T): Browsing mechanism only.

11:05 1 1 Demo of Load K: Error after loading 2 theories-attempted to delete one, failed on first
development theory attempt.

11:06 Program window 0: Described the features of interface and representation of specification.
after transformation

11:08 Program window U: How to handle optimization for particular architecture.
after transformation

11:12 Choose tactic 0: Chose global search design tactic.

11:13 Choose Rainbow T: Pruning mechanism; control mechanism.

11:14 Choose previous T: Recursive program.

:b

I

E.0o
0l

-. -. . -s Y 1 .1 N !;

K: key incident 0: observation Q: observer query
Time Dur Task ApplJOperation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
11:16 7 Simplify Prog/Spec window U: Does simplification support understanding; can you simplify whole

program?
11:23 5 Partial evaluation Prog/Spec window
11:28 9 Finite differencing
11:37 2 Case analysis
11:39 18 Compile 0: Complete derivation.

U: Have you compared the results of this prototyping technique to code
produced by programmers?

R(T): Have not tried against programmers, only compared to standard
graduate computer textbook algorithm.

U: What complexity of problem has it been applied to?
R(T): Scheduling.

U: How long does it take a user to learn it?
R(T): Not enough data points to really know.

11:57 9 Demo of derivation Command window
0: Entered commands to find and type out derivation structure.

12:06 9 Demo of theory Prog/Spec window
development
(sorting theory)

14:33 134 Understand problem Not on computer
14:58 (est) 0: Group discussed the definition of engageability and doctrine zones

15:00 0: Discussion of the problem covered following topics:
-Presentation of the update.
-AEGIS System diagram.

R:

Qn

9

K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
Understand problem
(continued)

-+--__ +

| Own Ship |

I Nav. I--+

WCS: Weapons

ADS: Aegis D:

(tacticz
+--+----+--+ I C&D: Cormand

I I I (locatic

v I v
+_______+ +------- +-I +_____+ +---- +
I SPY-1 I--->1 Track file I-)->I C&D I--->1 ADS I
I I I Correlator I lI <---I I
+-______+ +------+_- ___+ I +--+--+ +----+

I I I

Control System
[splay System
al decision aid)

& Decision

)n of tactical doctrine)

I v- v~

I + … __+ +_______
+----->1 WCS 1--->l Weapons I

+ …___+ + …____+

-Track file updates are no faster than 1 per second.
-Form of input discussion; clarification of input data,-only location or more as

well.
0: Discussion of generality of design including following topics:
- Only 1 Aegis, 1 carrier, or more general such as 1 ship, several slaves, or 2

ships.
- The reason to adopt a general design is this makes it clearer how to organize

our data, e.g., to know what the inputs are.
- Clarification of "ownership" of doctrine and region; e.g., ownship has

weapon doctrine and engageability, other ships have slave doctrine.
0: Input clarification continued.
- Slave doctrine can be attached to hostiles.
- ID of objects: hostile, friendly, neutral, unknown, basic.
0: Clarification of input display icons (i.e., circle, square, triangle):

Fixed zones-how is it given.
Tight zones definition.
Returning aircraft approach zones: possible output would be hostile

in returning aircraft zone.

0
:b,zo.

k

to

?ttn -3 ' Vl f

K: key incident 0: observation Q: observer query
Time Dur Task Appi./Operation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
Understand problem Are zones changeable? Yes.
(continued) Tight zones look like they're polygonal.

0: Clarification of output:
paragraph on page 8 giving objective;
give region for every object not a friendly.

0: Long silence.

16:15 Not on computer 0: Completed understanding of input (see above).

16:20 Not on computer 0: Completed discussion of output (see above).

16:31 Understand problem Not on computer 0: Started discussion of how to proceed but shifted to discussion of output.
(continued)

T: Talk aloud about the process-because not sure about how to proceed
(very little stated about what output should be).

0: Shifted to discussion of output and possibility of parallelism.

16:39 Not on computer 0: Restarted discussion of building a theory.
T: What objects are there?
- What attributes do they have?
- Are there zones of different flavors?

16:41 Not on computer 0: Reference/grid system brought up.

16:42 Not on computer K: In discussion of domain, the following point was made about the form of
the representation: T: Computationally it will be easier to implement
some types of shapes.

0: Discussion of how to define shapes at a conceptual level.
0: Discussion of definition of objects:

O

to

4'

Ui

U)

t U)< S
0

O
O.a - U

P.~~~~~~c

.. g con

"4-a

Cu

I
Cu
I-

O

*0 C)
4.09 O

CZ

0 O O cn

o -CC.)I

.

Cu

e~

o0
C.)

40.

0
a)

-IB

O

C)

C41)

U

4.

4-

3
Q
ce4-

C.

C.)

4 -

c1;
c

2 ._

s 0
wUS

..0

0
°c

0

'0

0 W

0 0
0 .4

t)QC

t C*

H .> .
.2 U)4

IDW

C)

I
C)

04K

r.
C)

I-t
a)

2
C._

to

I-

3

0
to

.t

.-C

o O

4I:L

U O)

U)

4-

2
C)

IQ

I-

0

C.

>Cu

I-

I-
0Cu

> C)
2 .

C)

Q

0 UF

Co4-0

. 0

(5

r
Co

0

Cu

0

C)

-C

r.)
10

U)

Cu

) --
K r.00
o +1

; 0
04

c.) >U 6
'S 0

>l U

O)
C) ;-4

C0
*_u C

0
COO

M04.

toF
C.)

CuC)

.- .-

C)

to "

O =

0 0

04-

C)~~~~~~~~~~~~~~~~~~~~~C
e 2

+C)

0 Cu 0rE 04 -~~~~~~~~~~~~

ch ^ F oo o > e t> > 0

- C)

10 O 4) I~~~~~~~U) U) U

0.) 0 C).) C.

C) 1- - -4 C

21 C,

r-
41~

C,_

A Paradigm to Assess and Evaluate Tools

CQ)

0
I-,

c)

0

b -

C)

U)

O ,

0
CJ
I..

I-
C.

0

C):)
4a) O4

.0 MF
O> 0." tP. g

.- U

Y4

LI
i
i

1I
4

-_

K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

T: tutor/tool-expert commenttquery
17:06 1 Theory development: Emacs 0: Defining FLATLAND.

Define object-class
FLATLAND

17:07 4 Theory development: Emacs
Define attributes

17:09 (FLATLAND) Emacs U: "Map" is a REFINE operator?
R(T): Yes, all attributes are treated as far as their type as global maps, attributes

link objects.

17:10 Emacs K: Error, failure to copy text-forgot a parenthesis.

T: Define zone objects later.
17:11 1 Theory development: Emacs 0: Defined another class (CONTACT objects, subclass of HIPER-D objects)

Define object-class
CONTACT

17:12 7 Theory development: Emacs
Define attributes
(CONTACT)

(coordinates) T: How to define location, as an x and y or a pair.

17:13 (classification) Emacs K: Decision to define a position object later.
T: Define classification attribute-friendly, hostile, etc.

17:15 Emacs K: Comment on alternative representation of coordinates (U: May be useful
to define coordinates in relative terms. We may want to return to this
option. Engageability computations may be easier with relative
coordinates.)

17:17 (mode) Emacs K: Decision to define "mode" later.
(contact zones)

t'.

IZ.
Cn
0
'0

K: key incident 0: observation Q: observer query
Time Dur Task AppliOperation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
17:19 10 Theory development: Emacs 0: Used copy, repeated paste to set up templates once ZONE class had been

Define object-class defined
ZONE

0: Defining WEAPONS-DOCTRINE object-class
0: Defining ENGAGEABILITY-ZONE object-class
0: Defining SLAVE-DOCTRINE object-class
0: Defining TIGHT-ZONE object-class
U: Should a distinction be made between different tight zones?
K: Discussion of how to define attributes of zones especially the shape and

17:20 subtype of the zone; resolved by discussing possible cases.

17:28 Emacs 0: Completed discussion of zone typing and described possible output
grammars.

17:29 2 Theory development: Emacs
Define object-class
POSITION

17:31 13 Theory development: Emacs K: Error, forgot about inserting attributes for zone classes, returned to
Define attributes attributes.
(ZONE) K: Decision on basic zone shapes:

- have a wedged annulus shape
- and a polygon shape.

0: Defining WD-shape.
17:36 Emacs U: What are the two levels of access to the WEDGED-ANNULUS class?

R(T): WEAPONS-DOCTRINE object, to get to its inner radius... [end of tape]
17:39 Emacs K: Discussion of implication of different representation of zones.

0: Defining SD-shape.
0: Defining EZ-shape.
0: Defining TZ-shape.

17:42 0: Completed attributes.

17:43 U: What is significance of stuff to right of "="?

R(T): Initialization for the attribute, initial values when compiled.

',
4"

lb.
0
t'an

Q
k

-I -I 7 I I r (' -1 -I ') I 9.i z - . - _j , ,

K: key incident 0: observation Q: observer query
Time Dur Task AppL/Operation R: response to query U: user comment/query

T: tutor/tool-expert commcnt/query
17:44 1 Theory development: Emacs 0: Defining WEDGED-ANNULUS and POLYGON classes.

Define object-class
17:44 1 3 Theory development: Emacs 0: Discussion of shape attributes.

Define attributes l

(WEDGED- Not on computer U: Angle orientation of wedge, book says weapon doctrine angle is given in
ANNULUS) degrees but fails to say from what point the degrees are measured.

17:54 (POLYGON) Emacs T: Will need to import sequence theory.
U: Is it a fixed or arbitrary length sequence?
R(T): Fixed length sequences are called tuples.

17:56 T: Have we defined everything?
17:57 1 Theory development: 0: Added type (symbols) called CLASSIFIER and AIR-SEA-MODE symbols.

Define types
CLASSIFIER,
AIR-SEA-MODE

17:57 2 Theory laws O: Added axioms to constrain meaning of new types.
(est)

Q: What were you typing over here?
R(T): Same theory in two different buffers.
K: Example of usage of two representations of same artifact in order to

maintain consistency in different sections.
17:58 Save solution file Emacs

______ _____ ____________________ T: That gives us the basic ontology.
1_17:59(est) Preceding: Day 1; Succeeding: Day 2

t3

0

s;3

4,
0.
C13

I I K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

l ____________ _______________-_ T: tutor/tool-expert comment/query

........ I -- ____ .. Prce ig : D.ay S eedi gj ay 2 -- _..

0)9:44 L I -. Emacs. 0: PriorElay's work loaded successfully.
09:45 1 0 Compile I Compile/Emacs

K: Grammar error, doesn't like the underscore, dashes substituted.
K: Minor change in representation due to syntax error.

09:48 Compile/Emacs K: Error, type mismatch in x and y coordinates and map.
Not important: T: Supposed to be attributes of object so should be a
map from position to integer, didn't get type right.

09:53 K: Discussion of theory representation (T: Next system will distinguish
between axioms and theorems, now both are included under theory-
language2)._

09:55 5 Theory operations: Emacs 0: Typing in HIPER-D function.
Define function T: Trying to generate a map-CONTACT to a set of zones; will come back to
HIPER-D input, output, and properties.

9:59 1 Emacs 0: Short description of map constructor. ___ _-__

10:00 1 0 Theory operations: Emacs U: What does "for all zones" give us'?
Define function R(T): Want to consider all possible zones in this scenario.
ALL-ZONES

10:02 0: Tutor described the general process model, defined overall concept and
then filled in details.

10:08 Emacs Q: How did you know you already had this info?
R(T): Already have this data directly from data structures, don't need separate

function ALL-CONTACTS.
10:10 20 Theory operations: 0: Discussion of how to find intersection of CONTACT-a location with set of

Define function points-within ZONE; i.e., how to compute set of points enclosed by a
IN-ZONE polygon.

10:22 Emacs K: T noted that this was a choice point in theory definition design.

10:24 Emacs T: Comment on where we are in solving problem (how to define IN-ZONE
______ predicate).

cot

'0
k

0

:lb

4',

04.

a
0

0E

Z

x

'-9

0
0

4'

o'3

U'

IUIT i I X Vi 1 IMN n

K: key incident 0: observation Q: observer query
Time Dur Task AppliOperation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
10:26 Theory operations: Emacs K: Error, hit return key instead of another key; was attempting to copy and

Define function paste template.
IN-ZONE

10:28 (continued) Emacs K: Error, hit formatting command instead of desired meta command.
10:30 51 Theory operations: Emacs K: Rewrite of higher level function.

Define function 0: Second instance of revising representation or a higher level function after
IN-WEDGED- having started on the lower level.
ANNULUS T: Instead of passing whole zone, only need to pass the attribute shape.

10:34 Emacs K: Error, type mismatch noticed in writing function.

10:36 Emacs K: Error, noticed that annulus attributes don't include origin.
10:37 Theory operations: Emacs Q: What do you mean that the optimization could be done in KIDS?

Define function R(T): An operation will be repeated several times-and this could be handled
IN-WEDGED- by an abstraction operation in KIDS.
ANNULUS

10:45 (continued) Emacs K: Didn't remember formula to convert from cartesian to polar.
0: Ul was working independently on geometry.

10:50 0: Ul offered an alternative geometric solution.

10:51 0: U2 left to find geometric function book.

11:03 0: U2 couldn't find a "particular book" that covered geometry.

11:09 Emacs 0: T described a geometric solution-and expressed limitations of reasoning
from diagrams.

11:17 Emacs 0: All working alone on a geometric rationale.

11:18 T: Have top level math to figure if a point is in the wedge.
11:21 8 Finding trig function REFINE listener K: Error, couldn't find trig function-didn't know Lisp name of the arc

function.
1: -- aeOlution ~ 0: U2 left to check trig function.

04.

0

K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
11:29 3 Theory operations: Emacs T: Need a distance function and compute-angle function.

Revise function
IN-WEDGED- 0: Save theory.
ANNULUS

11:30 Emacs T: Completed definition of IN-WEDGED-ANNULUS.

11:31 0: U2 returned with name of arc function.
11:32 27 Theory operations: Emacs

Define functions
11:34 DISTANCE, Emacs K: Discussion of cases begins: T: What if distance is zero?

COMPUTE-ANGLE
11:37 K: Error, logic in geometric test was incorrect.

0: Found by rereading function test.
11:38 Theory operations: K: Revision of representation for specific cases.

Define functions T: What to do if distance between CONTACT and center of zone is zero-
DISTANCE, realize that WEDGED-ANNULUS is a general zone shape to cover
COMPUTE-ANGLE SLAVE-DOCTRINE zones as well.
(continued) T: Solution for d = 0: if d = 0 then IN-ZONE, else check if within non-wedge

of zone.

11:43 K: Revision of representation for specific cases.
U: What do we do if there is no wedge?
T: Revised IN-WEDGE logic to check if initial and final angles are not equal.

11:46 K: Discussion and mental checking for other cases, such as inner radius = 0,
which covers SLAVE-DOCTRINE zones.

11:47 Evaluate K: Error, doesn't like ellipses.
K: Error, didn't put in vertical bar to separate conditionals.
K: Error, dash not recognized as subtraction.
K: Error, function not defined yet (IN-POLYGON).
K: Error, local variable not defined (offset).

11:51 T: How do we define IN-POLYGON?

0Q

0
:lb

4'

04.

0

lz

Z
D

0 17171711"MINn

Time

11:53

1 I .CC
I It. J J

Dur

11:59 est)
12:46 49

12:51

13:00

13:16

Task

Theory operations:
Define functions
DISTANCE,
COMPUTE-ANGLE
(continued)

Save solution file

Theory operations:
Define function
IN-POLYGON

Appl./Operation

Emacs

Not on computer

Not on computer

K: key incident 0: observation Q: observer query
R: response to query U: user comment/query

T: tutor/tool-expert comment/querv

Q: Where are we in theory development?
R(T): Defining IN-POLYGON is probably all we need and then can actually

explore several implementations of all this.

K: Representation issue (T: Definitions of concepts are not obvious in this
domain).

'Break for lunch___ ____......... -. . . . __ _.

0: U and T referred to graphics book-inside test being used to fill in.

K: Representation issue (T: Can't specify IN-POLYGON without giving a
method or algorithm; specifying IN-POLYGON by giving a method is
not satisfactory; would like to give a theory).

0: Minutes of quiet work by all.

K: Decision to use odd-even method with line intersections; even # of
intersections means point is inside polygon.

13:35 3 Theory operations: Emacs 0: Coding intersection algorithm.
(est) Define function

FIND-LINE- 0: Leave as stubs, fill in later.
____ __INTERSECTION I

13:38 10 Define theory Evaluate
K: Error, type mismatch, real/integer-for angle; angle changed to real.
K: Error, type mismatch, real/integer-for DISTANCE; DISTANCE changed

to real.

00

W
0

4',

0.

0V

K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

____ __________________ T: tutor/tool-expert comment/query
13:43 Define theory Emacs K: Representation revision-renamed angle "a" to "contact-angle" (a =

(continued) angle between reference and CONTACT).
T: Should we do a floor or ceiling?
U: Do you have a round function?
R(T): Lisp does.

0: Type mismatches led to discussion of how to convert and a test of several
embedded functions such as round.

13:46 Evaluate K: Error, offset type mismatch.
Emacs K: Error, didn't need to compile, just parse if correct.
Reader 0: All type mismatches found in WEDGED-ANNULUS.

13:48 3 Look at spec
13:51 7 Compile Compile K: Successful on first try.

K: Error, some type of abstraction failed (abstract out a new specification).
13:58 35 Algorithm design Tactic:

Divide and Conquer

13:59 Tactic

14:03 K: (T: Bug in the program scheme giving the wrong variable).
14:03 Backup to disk T: Backing up to Divide and Conquer to see where flaw originated.

14:10 K: (T: Bug in the inference engine- may take long time to find).
14:11 Restore

14:13 Abstract
Tactic 0: Exploring design options to find zones.

14:17 Tactic: K: Error in Divide and Conquer tactic when applied to zone (same problem
Divide and Conquer again-inference failure, typically because of missing laws).

T: Discontinue the derivation.
14:27 T: Examining an internal theory structure-looks like it was constructed

wrong.

lb-

k
G_

I..

t
QktT

lb00

4',

'IC

nD 7 q it P 'VI IN nU ; ; I � I ;

Task

Algorithm design
(continued)
Theory operations:
Define function
IN-POLYGON

Theory operations:
Define function
FIND-SEGMENT-
INTERSECTION

Check
IN-POLYGON

Appl./Operation

Emacs

Not on computer

Emacs
Emacs

2 Ermacs windows

2 Emacs windows

K: key incident 0: observation Q: observer query
R: response to query U: user comment/query

T: tutor/tool-expert comment/query
* Break_______ _______ __ _ _ __ _

0: Checked previous programs.

b: Continued to fill out polygon function.

K: Options discussed for finding IN-POLYGON.

U: Assume convex polygons.
U: Do a polygon fill and check for point.

K: Proliferation of cases usually means that there isn't a goodtheory _efined.
K: Error, noticed type definition for output type wrong (change from function

that evaluates line intersections to FIND-SEGMENT-INTERSECTION,
which returns a segment).

i0: Completion of segment intersection.
0: Began to implement a test capability.

0: Task switched to double buffer.

T: Need to consider sequences is driven by the special case.
16:36 39 Theory operations: Emacs T: Realized that intersection checking had to be restricted to segments that

Define function could overlap.
FIND-SEGMENT-

16:39 INTERSECTION Emacs K: Error, in keyboard entry [not verbalized on tape].

16:55 Emacs T: Which is varying, x or y?

17:01 Emacs T: Recalled what the "dangling else" was-the normal case.
17:06 Read/compile K: Error, type mismatches.

17:08 Read/comileK: Successful compile -can count intersections.
.71 SaveEm

Dur

81

13

20

Time

14:30
14:39

14:42

15:25

15:56
16:03

16:1.1

- 16:16

16:20

16:23

o

0

0.

0e

K: key incident 0: observation Q: observer query
Time Dur Task Appl./Operation R: response to query U: user comment/query

T: tutor/tool-expert comment/query
Theory operations:

17:11 Define function Q: Clarification of parallelism of IN-POLYGON.
FIND-SEGMENT-

17:13 INTERSECTION Emacs K: Compilation complete.
(continued) Q: Clarify what is meant by uncertainty about accurate specification.

17:15 1 Theory Emacs 0: Began to define function to check COUNT-INTERSECTIONS of some
miscellaneous forms polygon.

17:16 10 Theory operations: Emacs double K: Decided to make a function to test zones rather than a miscellaneous form.
Define function buffer
MAKE-TEST-ZONE

17:18 Emacs K: Error, lost test-retrieved.

17:19 T: Would like to have a grammar that could be used to parse an input string
for data input. Have to use a series of assignments instead.

17:23 Evaluate K: Possible error in attempting to call function because some of the structure
hadn't been named.

17:26 2 Theory operations: Emacs double 0: Began to make function to define a contact object.
Define function buffer
MAKE-TEST-
CONTACT

17:28 33 Test contact Emacs double K: Error, put on trace mechanisms for error type mismatch for functions
IN-POLYGON buffer (accessing data incorrectly-IN-POLYGON expecting a polygon, not a

TIGHT-ZONE).

17:32 Emacs K: Error, divide by zero (slope of line = 0; if line is horizontal, simplify the
test for finding intersection).

180 aeslto file BEma

t4,

lb-
00

0

En

0

Cn

0

k
IN
a
Z
Q

_w

PIT 17 '�rvllNn1 I I -1 i .1 .1 it

Appendix B
LAST SOLUTION FILE

%%% -*- Mode: RE; Package: RE; Base: 10.; Syntax: Refine -*-

!! in-package("RE")-
!! in-grammar('THEORY-GRAMMAR, 'REGROUP)

THEORY HIPER-D-4

% ------------------------ -- -- -- -- -- -- -- -- -- -- ------
THEORY-IMPORTS { }

THEORY-TYPE-PARAMETERS { }

THEORY-TYPES

type CLASSIFIER = symbol
type AIR-SEA-MODE = symbol

var HIPER-D-object: OBJECT-CLASS subtype-of USER-OBJECT

var FLATLAND : OBJECT-CLASS subtype-of HIPER-D-object
var contacts : map(flatland, set(CONTACT)) = { I I}
var flatland-zones : map(flatland, set(ZONE)) = { II }

var CONTACT: OBJECT-CLASS subtype-of HIPER-D-object
var coordinates: map(CONTACT, POSITION) = {I I}
var classification : map(CONTACT, CLASSIFIER) = { I I }

var mode: map(CONTACT, AIR-SEA-MODE) = { I I }
var contact-zones : map(CONTACT, set(ZONE)) = { I I }

var ZONE: OBJECT-CLASS subtype-of HIPER-D-object
var WEAPONS-DOCTRINE: OBJECT-CLASS subtype-of ZONE
var SLAVE-DOCTRINE: OBJECT-CLASS subtype-of ZONE
var ENGAGEABILITY-ZONE: OBJECT-CLASS subtype-of ZONE
var TIGHT-ZONE: OBJECT-CLASS subtype-of ZONE

var WD-shape: map(WEAPONS-DOCTRINE, WEDGED-ANNULUS) = { 11 }
var SD-shape: map(SLAVE-DOCTRINE, WEDGED-ANNULUS) = {II}
var EZ-shape: map(ENGAGEABILITY-ZONE, WEDGED-ANNULUS) = { II
var TZ-shape: map(TIGHT-ZONE, POLYGON) = (11}

33

Ballas and Stroup

var WEDGED-ANNULUS : OBJECT-CLASS subtype-of HIPER-D-object
var inner-radius: map(WEDGED-ANNULUS, integer) = {(II
var outer-radius: map(WEDGED-ANNULUS, integer) = (III
var initial-angle: map(WEDGED-ANNULUS, integer) = {I1I
var final-angle: map(WEDGED-ANNULUS, integer) = {11}
var origin: map(WEDGED-ANNULUS, POSITION) = {11}

var POLYGON: OBJECT-CLASS subtype-of HIPER-D-object
var vertices: map(POLYGON, seq(POSITION)) = {II}

var POSITION: OBJECT-CLASS subtype-of HIPER-D-object
var x-coord: map(POSITION,integer) = {I I}
var y-coord: map(POS1MION,integer) = {I I}

type angle = integer

THEORY-OPERATIONS

function HIPER-D
(fo: FLATLAND)
returns (contact-map : map(CONTACT, set(ZONE))

I contact-map = II c -> { z I (z:ZONE) z in all-zones(fo) & in-zone(c,z)}
I (c:CONTACT) c in contacts(fo) I})

function HIPER-D-2 (CNTKS-7: set(CONTACT), ZNS-9: set(ZONE))
returns

(Z-192: map(CONTACT, set(ZONE))
I Z-192

{I C -> {Z I (Z: ZONE)
Z in ZNS-9 & IN-ZONE(C, Z)}

I (C: CONTACT) C in CNTKS-7 1)
=if CNTKS-7 = I I then {I I}

elseif CNTKS-7 less! arb(CNTKS-7) = {}
then (I C -> {Z I (Z: ZONE)

Z in ZNS-9 & IN-ZONE(C, Z)}
I (C: CONTACT) C in CNTKS-7 I}

else let (Y-OP-3
tuple

(set(CONTACT), set(ZONE), set(CONTACT), set(ZONE))
= HIPER-D-2-DECOMPOSE-USING-UNION-DESTRUCTOR

(CNTKS-7, ZNS-9))
HIPER-D-2(Y-OP-3.1, Y-OP-3.2)
+* HIPER-D-2(Y-OP-3.3, Y-OP-3.4)

function ALL-ZONES
(fo: FLATLAND): set(ZONE)
= flatland-zones(fo) union reduce(union, image(contact-zones, contacts(fo)))

34

A Paradigm to Assess and Evaluate Tools 35

function IN-ZONE
(c: CONTACT, z: ZONE): boolean
= (if WEAPONS-DOCTRINE(z) then in-wedged-annulus(c,WD-shape(z)) ,,

elseif SLAVE-DOCTRINE(z) then in-wedged-annulus(c,SD-shape(z))
elseif ENGAGEABILITY-ZONE(z) then in-wedged-annulus(c,EZ-shape(z))
elseif TIGHT-ZONE(z) then in-polygon(c,TZ-shape(z))
else undefined)

function IN-WEDGED-ANNULUS
(c: CONTACT, z: WEDGED-ANNULUS): boolean
= (let (p : POSITION = coordinates(c))

<x-coord(p), y-coord(p)>
in
{ <x,y> I (x:integer, y:integer, d : real, contact-angle : angle, offset: integer)

d = distance(x-coord(origin(z)), y-coord(origin(z)),x,y)
& inner-radius(z) <= d & d <= outer-radius(z)
&(d>0.0
& initial-angle(z) -= final-angle(z)
=> contact-angle = compute-angle(x-coord(origin(z)), y-coord(origin(z)),x,y, d)

& offset = (contact-angle - initial-angle(z)) mod 360
& offset <= (final-angle(z) - initial-angle(z)) mod 360)

function DISTANCE
(xl: integer, yl: integer, x2 : integer, y2 : integer) : real
= sqrt((x2 - xl) * (x2 - xl) + (y2 - yl) * (y2 - yl))

% note: we have rounded, so this is approximate
function COMPUTE-ANGLE

(xl: integer, yl : integer, x2 : integer, y2 : integer, d: real
I d = distance(xl,yl,x2,y2) & d > 0.0): integer

= round(acos((x2 - xl) / d))

function FIND-SEGMENT-INTERSECTION
(xl: integer, yl : integer, x2: integer, y2 : integer,
ul: integer, vl: integer, u2: integer, v2: integer)
tuple(real, real,real,real)

= (let (slope-xy : real = (x2 - xl)/(y2 - yl),
slope-uv : real = (u2 - ul)/(v2 - vl))

let (intercept-xy : real = yl - slope-xy * xl,
intercept-uv : real = vl - slope-uv * ul)

if slope-xy = slope-uv
then (if intercept-xy -= intercept-uv

then undefined
else check-coincident-lines(x 1, y 1, x2, y2,ul, vl, u2, v2))

else (let (x : real = (intercept-uv - intercept-xy)/(slope-uv - slope-xy))
let (y : real = slope-xy *' x + intercept-xy)
(if xl <= x2
then (if xl <= x & x <= x2

then <x,y,x,y>
else undefined)

36 Ballas and Stroup

else (if x2 <= x & x <= xl
then <x,y,x,y>

else undefined))))

function CHECK-COINCIDENT-LINES
(xl: integer, yl: integer, x2: integer, y2: integer,
u : integer, vi: integer, u2: integer, v2: integer)
tuple(real, real,real,real)

= undefined

function COUNT-INTERSECTIONS
(cx : integer, cy : integer, outx : integer, outy : integer,
z-vertices : seq(POSITION), cnt: integer) : integer
= (if size(z-vertices) <= 1

then cnt
else (let (Intersect-interval : tuple(real, real,real,real)

= find-segment-intersection(cx,cy,outx,outy,
x-coord(first(z-vertices)),
y-coord(first(z-vertices)),
x-coord(second(z-vertices)),
y-coord(second(z-vertices))))

if defined?(Intersect-interval)
then (if Intersect-interval. 1 = Intersect-interval.3

& Intersect-interval.2 = Intersect-interval.4
then % single point intersection

(if Intersect-interval. 1 = integer-to-real(x-coord(first(z-vertices)))
& Intersect-interval.2 = integer-to-real(y-coord(first(z-vertices)))
then undefined %elaborate later

elseif Intersect-interval. 1 = integer-to-real(x-coord(se cond(z-vertices)))
& Intersect-interval.2 = integer-to-real(y-coord(se cond(z-vertices)))

then (if y-coord(first(z-vertices)) <= cy
then (if y-coord(second(z-vertices)) <= cy

then COUNT-INTERSECTIONS(cx,cy,outx,outy,
rest(rest(z-verti ces)), cnt)

else COUNT-INTERSECTIONS(cx,cy,outx,outy,
rest(rest(z-verti ces)), cnt + 1))

else (if y-coord(second(z-vertices)) <= cy
then COUNT-INTERSECTIONS(cx,cy,outx,outy,

rest(rest(z-verti ces)), cnt + 1)
else COUNT-INTERSECTIONS(cx,cy,outx,outy,

rest(rest(z-verti ces)), cnt)))
else %normal case

COUNT-INTERSECTIONS(cx,cy,outx,outy, rest(z-vertices), cnt + 1))
else % coiincident lines

undefined)
else % no intersection
COUNT-INTERSECTIONS(cx,cy,outx,outy, rest(z-vertices), cnt)))

function IN-POLYGON
(c: CONTACT, z: POLYGON): boolean
= (let (p : POSITION = coordinates(c),

Ballas and Stroup36

A Paradigm to Assess and Evaluate Tools

z-vertices: seq(POSITION) = vertices(z))
let (cx = x-coord(p), cy = y-coord(p),

outx = -1, outy = y-coord(p))
if count-intersections(cx, cy, outx, outy,

z-vertices ++ [first(z-vertices)], 0) = 1 mod 2
then true
else false
)

function MAKE-TEST-ZONE 0
= (let (z : ZONE = make-object('TIGHT-ZONE),

poly: POLYGON = make-object('POLYGON),
pl: POSITION = make-object('POSITION),
p2: POSlTION = make-object('POSITION),
p3: POSITION = make-object('POSITION),
p4: POSITION = make-object('POSITION),
p5: POSITION = make-object('POSIlION),
p6: POSITION = make-object('POSIlION)
)

x-coord(pl) <- 0; y-coord(pl) <- 25;
x-coord(p2) <- 118; y-coord(p2) <- 62;
x-coord(p3) <- 259; y-coord(p3) <- 25;
x-coord(p4) <- 259; y-coord(p4) <- 5;
x-coord(pS) <- 118; y-coord(pS) <- 32;
x-coord(p6) <- 0; y-coord(p6) <- 5;
vertices(poly) <- [p1,p2,p3,p4,pS,p6];
TZ-shape(z) <- poly;
poly)

function MAKE-TEST-CONTACT 0
= (let (c : CONTACT = make-object('CONTACT),

pl: POS1IION = make-object('POSITION))
x-coord(pl) <- 258; y-coord(pl) <- 183;
coordinates(c) <- pl;
c)

THEORY-LAWS

assert def-of-CLASSIFER
fa(c : CLASSIFIER) c in {'friendly, 'hostile, 'own, 'unknown)

assert def-of-AIR-SEA-MODE
fa(asm: AIR-SEA-MODE) asm in {'AIR, 'SEA)

THEORY-RULES

M_

THEORY-MISC-LAWS

37

38 Ballas and Stroup

THEORY-MISC-DEFS

THEORY-MISC-RULES

THEORY-MISC-FORMS

end-theory

r--

r-r

Appendix C
QUESTIONNAIRE

The following questions address the software development model in the tool. These questions address
several functions in the model. Each function is indicated with italics. For each function, please give a
general assessment, as well as a specific assessment of the best features and any recommendations you
would have for changes.

Scale 0 1 2 3 4 5
Rating Poor Fair Average Above Good Excellent

Average

Q1. In general, how well does the tool support the development of a theory of the domain?

What are the tool's best features for this function?

What changes or additions would you suggest for this function?

Q2. As a part of developing the domain theory and specification, how well does the tool support
specifying functional constraints on input/output behavior?

What are the tool's best features for this function?

What changes or additions would you suggest for this function?

Q3. As a part of developing the domain theory and specification, how well does the tool support the
generation of rules and derivation of laws?

What are the tool's best features for this function?

What changes or additions would you suggest for this function ?

Q4. In general, how well does the tool support converting a specification to code?

What are the tool's best features for this function?

What changes or additions would you suggest for this function ?

39

40 Ballas and Stroup

Q5. As part of converting a specification to code, how well does the tool support algorithm design?

What are the tool's best features for this function?

What changes or additions would you suggest for this function ?

Q6. As part of converting a specification to code, how well does the tool support algorithm
simplification?

What are the tool's best features for this function?

What changes or additions would you suggest for this function ?

Q7. As part of converting a specification to code, how well does the tool support partial evaluation?

What are the tool's best features for this function?

What changes or additions would you suggest for this function ?

Q8. As part of converting a specification to code, how well does the tool support refinement of data
types?

What are the tool's best features for this function?

What changes or additions would you suggest for this function ?

The next few questions address how the tool works in supporting software design.

Q9. How well does the tool support exploration of the design space (i.e., exploration of alternative
design solutions)?

Q10. How well does the tool support the generation of alternative designs?

Ql l. How well does the tool support the evaluation of alternative designs?

Q12. What are the strengths of the tool?

Q13. What are the weaknesses of the tool?

Q14. In general, what additional functionality would you like to see?

A Paradigm to Assess and Evaluate Tools

Q15. What changes would you suggest to the interface?

Q16. Is the symbology appropriate in the interface?

Q17. Are the graphics adequate?

Ql 8. Is the response time of the tool to user commands adequate?

Q19. Is the software model implemented in this tool consistent with your concept of the software
development process?

Q20. Is the problem that the tool was used on sufficiently complex to assess the utility of the tool for
designing software for Navy systems?

The following features have been found important in the usability of the interface. Please comment on the
extent to which these features are present in the tool, and elaborate on your assessment.

Feature Present Elaboration

Simple and
natural dialogue
Speaks the user's
language
Minimizes user
memory load
Consistency

Provides feedback

Provides clearly
marked exits
Provides shortcuts

Provides good
error messages
Designed to
prevent errors
Tolerates errors

Provides for error
recovery
Minimizes system
response time

41

